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Consider a twc-rooted graph G, the edges of which are directed in such a way 
that there are no cycles and every edge belongs to some self-avoiding walk from 
root u to root v which follows the direction of the edges. A u-v backbone of G 
is a subgraph formed by taking the union of any subset of directed self-avoiding 
walks from u to v. Let .-~v be the set of all such backbones of G partially 
ordered by set-inclusion. We prove the conjecture of Bhatti and Essam that the 
M6bius function of this set is given, for acyclic b, b'~g~u~ with b~<b', by 
~(b, b')= ( -1)  c' c, where c and c' are the respective cycle ranks of b and b'. 
The significance of this result in percolation theory is reviewed together with 
previous results for other sets of subgraphs. 

KEY WORDS: M6bius function; backbone graphs. 

1. I N T R O D U C T I O N  

Bond percolat ion was in t roduced by Broadbent  and  Hammers ley  II/ in 

terms of a model  of fluid flowing through a porous  medium. They con- 
sidered a crystal lattice in which each b o n d  had probabi l i ty  p of being open 

to the flow of fluid independent ly  of all other bonds  and noted that there 

was a threshold Pc above which fluid in t roduced at a given site had a 
positive probabi l i ty  of wetting an  infinite n u m b e r  of sites. Soon afterwards 

D o m b  (2) drew a t ten t ion  to a similar p h e n o m e n o n  in r a n d o m  A - B  

mixtures, where p is now the probabi l i ty  that  a site is of type A. He 

pointed out  that  infinite clusters of the A species occur above a threshold 
probabi l i ty  Pc, and D o m b  and  Sykes (31 showed how p~ could be estimated 
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for several different lattices by deriving an expansion of the mean cluster 
size in powers of p. 

More recently, there has been considerable interest in electrical 
conduction in random resistor networks in which the open bonds of the 
Broadbent-Hammersley model are replaced by Ohmic resistors. In par- 
ticular, Fisch and Harris ~4) obtained power series expansions for an 
average of the point-to-point resistance in such a medium. 

In considering the passage of current between two electrodes, the only 
resistors which are of interest are those which lie on some conducting walk 
connecting the electrodes. The union of all such walks has become known 
as the backbone relative to those electrodes. (5) In different applications, 
properties of the backbone other than its resistance are of interest. For  
example, in a dilute Ising ferromagnet the number of nodal bonds is impor- 
tant in determining the behavior of the low-temperature correlation func- 
tion near the percolation threshold. (6) In electrical terms a nodal bond is 
one which carries the whole current flowing between the electrodes. 

Many other applications are described in a paper by Bhatti and 
Essam, ~7) where the use of M6bius functions for deriving power series 
expansions is described (see also Domb~8)). In the original calculation of 
Domb and Sykes, ~3) a technique known as the perimeter method was used. 
Although this method could be applied to the calculation of backbone 
properties, it requires consideration of all possible clusters connecting the 
electrodes and it is more efficient to avoid clusters with "dangling bonds" 
(i.e., bonds which carry no current). The penalty for this is that the 
probabilities associated with the backbone clusters are less easy to obtain, 
and hence the need for the M6bius function. 

If a directed percolation model is considered in which the resistors are 
replaced by diodes, then there is a simple formula for the M6bius function. 
This formula was conjectured by Bhatti and Essam ~7) and it is the purpose 
of this paper to supply the missing proof. 

In Section 2, several sets of different types of subgraphs of a graph are 
defined and previous results for their M6bius functions are summarized. 
The derivation of the M6bius function for the set of acyclic directed 
backbone subgraphs is given in Section 3, and in Section 4 we place our 
results in the context of percolation theory. 

2. M O B I U S  F U N C T I O N S  FOR PARTIALLY O R D E R E D  
SETS OF S U B G R A P H S  

2.1. General  Def in i t ion of M6bius  Function 

The use of M6bius functions in combinatorial theory is described in a 
fundamental paper of Rota, ~ where a number of general theorems may be 
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found. Applications to statistical mechanics are given in a review by 
Domb/8) 

Let .~ be a partially ordered set and for p, p ' ~  define the zeta 
function ~ as 

1, p4;p' 
~ ( P '  P ' )=  0, p 4; p' (2.1) 

The M6bius function #~ of ~ is defined to be the inverse of the zeta 
function, i.e., 

#e.~(P, P') ~(P" ,  P') = 6(p, p') (2.2) 
p,, ~ ~a 

where 6 is a unit matrix. The elements of p may be calculated recursively 
by 

/~(p, p') = ~ /~(p, p"), p < p' (2.3) 
p < ~ p " < p '  

otherwise 

o r  alternatively, 

{1~ p=p'  

p') = E p'), p < p' 
p < p " ~ p '  

otherwise 

(2.4) 

The subset of ~ whose elements are between p and p' will be known 
as the segment [p, p'], i.e., 

[P, P'] = {P" ~ I P4; P" 4; P'} (2.5) 

Notice that, from the definition of #~, 

/~(p", p') = ~ #~(p, p") = 0 (2.6) 
p" e [p, p ' ]  p" ~ [p, p ' ]  

and #~(p, p') depends only on the structure of the segment [p, p']. 
Let f(p) be a function defined on the elements of ~a, and let 

g(p)=  ~ f ( p ' ) =  ~ ~,(p,p') f(p')  (2.7) 
p' >~ p p ' ~  ?~ 
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Then solving for the function f gives 

f (p )  = ~ l~(p, p') g(p') (2.8) 

The segment [p, p ' ]  is itself a partially ordered set and its M6bius function 
is just the restriction of/~e to this segment. 

2.2. Part ial ly Ordered Sets of Subgraphs 

Let G = (V, E) be the graph with vertex set V and edge set E or arc 
set A when the edges are directed to form arcs. We consider the following 
sets of subgraphs of G which are considered to be partially ordered by con- 
tainment, i.e., if g and g' are two subgraphs, then g ~< g' if g ~ g'. If there 
is no element ~ of the set such that ~ < g for all g, then such an element 
is added to the specified set. This element will be known as the null graph. 
The following definitions are given for undirected graphs, with the addi- 
tions required for directed graphs in parentheses: 

~f~= {h '=  (V', E')[  V'~_ V, E'c_E(V')} [E(V')  is the set of edges in G 
adjacent to V'] is the set of all subgraphs of the graph G = (V, E) including 
the null graph Z .  

o~t~,, is the set of elements of ~ for which there is a (directed) walk 
from u to v, where u and v are two distinct root vertices (such a walk will 
be called a u v walk) together with the null graph ~ .  

is the set of all elements of gt ~ which are connected, i.e., the sub- 
graph has a walk between every pair of vertices (ignoring orientations) 
together with the null graph. 

<g, is the subset of graphs in <g which contain the vertex u (and have 
a directed walk from u to every other vertex of the subgraph) together with 
the null graph. 

c(,v is the subset of cg~ containing the second root vertex v together 
with the null graph. 

~,~ is the set of all u-v backbones (i.e., those c e ~u~ such that every 
edge of c is on some u-v (directed) walk) together with the null graph. The 
graph c is said to be coverable. 

These sets satisfy: 

(P1) Closure under union of their elements. 

(P2) N,~ -~ <g,v--- ~ ~ ~f. 

(P3) <gu~___cgu_~g_~x4,~ (cf. Fig. 1 for an example of the property 
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(P4) If ~r is any of these sets, with M6bius function #~, then 
#~(g, g') depends only on the segment [g, g ' ]  of graphs of type {r 

(P5) If 

c, c ' e  cg,~\ ~ ,  c ~< c', the segments [c, c'] of cg, v, cg,, and cg are equal 

c, c' e cgu\ z ,  c ~< c', the segments [c, c'] of C~, and cg are equal 

h, h' c ~ \  ~5, h ~< h', the segments [h, h'] of ~ and 9f  are equal 

Hence any property derived for segments of cg will be inherited by 
corresponding segments of ~,  and ~uv- The same property holds for ~ and 
J,Y,v. The hereditary property cannot be extended from x4e to cg, since type 
X/Y supergraphs of connected graphs are not necessarily connected. 

2 . 3 .  T h e  M 6 b i u s  F u n c t i o n s  o f  ovg a n d  cg 

In this section we recall and extend some previous results. 

(a) The simplest M6bius function to derive is that for the segment 
[(V, ~ ) ,  G] ___ ~ .  

L e m m a  2.1. For h, h '~ [(V, ~ ) ,  G], 

]~g(h,h')=(-1) IE'\EI when h'>>.h 

Proof. The segment is isomorphic with the set of all subsets of the 
edge set E of the graph G. This is the Boolean case and the M6bius 
function is given in Rota. (9) 

The following alternative proof parallels the proof of our main result 
in Section 3 (namely, the M6bius function for ~,v when G is directed and 
acyclic), and the method is presented in this simpler context as an 
introduction. We note first that the intervals [h, h'] and [ ~ ,  h'\h], where 
h'\h is the subgraph of G with edge set E ' \E  and vertex set V, are related 
by an order-preserving bijection. Thus, 

/~,(h, h ' ) = / ~ , ( , ~ ,  h'\h) (2.9) 

and it is sufficient to prove that 

#.,~,(~, h') = ( - 1) rL''l (2.10) 

Now [ ~ ,  h'] consists of all subgraphs of h' and if e is an edge of h', 
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we may partition the defining sum (2.6) for #~e according as the edge e 
does or does not occur in h'; thus, 

Y ( # ~ ( ~ ,  h ) +  ~ ,~(~ ,  h~)) = 0 (2.11) 
h~[,@,h']:e~h 

where h e is the graph h with the edge e deleted. We can now prove by 
induction on [E'I that 

# ,~(~,  h ' ) =  - # w ( ~ ,  h;) (2.12) 

Thus, if IE'I = 1, there is only one term in the sum and the result follows. 
On assuming the result for IEI < IE'I, we deduce that terms in (2.11) are 
zero except for h = h', which is the only term with IEI = IE'I, and hence, by 
induction, (2.12) follows, Equation (2.10) follows from (2.12) again by 
induction on the order of the set IE'I when we note that h; has one edge 
less than h'. | 

By P5, the same result is valid for ~ \ ~  and we may use (2.4) to 
express/~;e~ (~ ,  h') as the following sum: 

#~,v(~,  ) ~ ( - 1 )  IE'~EI (2.13) 
~<h<~h' 

Lemma 2.1 can be extended to the whole of Jt ~. 

L e m m a  2.2. For h ~ H ,  define the edge set E + =  E(V(h)) and the 
subgraph h + = (E § V) __ G. Then 

( _  1)IE'X~(~I ( _  1)f ~,, ~h~l, 
g~.(h, h ' )=  0, 

h ' e  [h, h + ] 
(2.14) 

otherwise 

We are also able to show that #~u~(~, h ' ) = 0  unless h ' ~ , ~ .  

k o m m a  2.3. Given h ' e ~ \ ~ ,  

~ .  ( ~ ,  h') = 0 

when h ' e  ~ v \ ~ v ,  and 

(2.15) 

#~u~(~, h ' )= /~u~(~ ,  h') (2.16) 

which is given by (2.15), for h'EMu~. 

Proof. For h '~Jt~ define bo to be the maximal, backbone 
subgraph of h' (bo is precisely the backbone formed from the union of all 
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u-v self-avoiding walks in h'). Define S ( h ' ) =  {h: h <h '  and h 4; bo}. Then 
S(h')  c ~ \ ~  and using (2.6), 

~ . ( ~ ,  h')= - ~ u ~ ( ~ ,  h) 
~Z~<~h<h' 

= - y~ #.~o~(;~, h ) -  y~ u~oo(Z, h) 
~J~h<~bo heS(h') 

= 0 - ~ #.~o~(~, h) (2.17) 
hES(h') 

Assume that for all u-v connected and nonbackbone h < h', #:e,o(~, h) = 0; 
then from (2.18) we deduce #~e,,(~, h ' )=0 .  Hence Eq. (2.15) follows from 
(2.17) by induction, the minimal case of a nonbackbone, u-v connected 
graph is given by an arc set consisting of a single walk and an extra arc. 
The various possibilities are illustrated in Fig. 2 and all satisfy the 
hypothesis of #~e,~(~, h') = 0. 

Equation (2.16) can be obtained inductively by using the recursive 
property (2.3) of M6bius functions together with Eq. (2.15). | 

(b) We now turn to the sets of connected subgraphs c~, (g,, and ~g,~. 
Denote by c a typical connected graph. The edge perimeter ~rG(c ) is the set 

v 

u (a) 

v 

(b) 
U 

Fig. 2. The two cases of minimal nonbackbone u - v  connected graphs considered in 
Lemma 2.1. In the directed case (a) the dangling bond is oriented into or away from the u - v  

walk. 
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of edges of G which do not belong to c, but which have at least one (initial) 
vertex in c. 

Let c + be the connected graph having edge set E(c)w 7cc(c ) together 
with all incident vertices. By construction, c + belongs to the same set as c. 
In the case of cg it was shown by Essam et al. (~~ that for c r 525, 

f(a-1)lE'\eu'~l for c ' ~ [ c , c  +] 
#~(c, c')= otherwise 

(2.18) 
k ~ 

and for c = ~ ,  from the general formula (2.3) 

#~(~,  c ' )=  - ~ #~(c, c') 
~<c<<.c' 

= - ~ ( - 1 )  le'\ E(')l (2.19) 
c ~ ;  c'~ [c,c =] 

If c'e [c, c+] ,  then c is said to be a nucleus of c', i.e., ceN(c ') .  With this 
notation 

# ~ ( ~ , c ' ) = -  ~ ( - 1 )  IE'\Eu'~I (2.20) 
c~N(c')  

Equations (2.18) and (2.20) hold for ~, and ~,~ by property P5. Finally, 
we note that Lemma 2.3 is also true when oct~,~ is replaced by c~,~. The 
argument follows in exactly the same way and hence (2.20) implies 

# # ~ ( ~ , b ' ) = -  ~ ( - i )  IE'\e(b)j | (2.21) 
b~N(b ' )  

3. THE M O B I U S  FUNCTION FOR ACYCLIC DIRECTED 
B A C K B O N E  G R A P H S  

In this section .~',~ refers to acyclic directed backbone subgraphs for 
the 2-rooted acyclic directed graph G. First we show how the segment 
[bo, b] ___ N,v is associated with the complete partially ordered set of back- 
bones .r of a 2-rooted graph derived from the difference of the arc sets 
A(b)\A(bo). The discussion then reduces to considering the M6bius func- 
tion #.~ for [ ~ ,  hi ,  bc~u~. This result is derived directly and also as a 
consequence of a deletion-contraction rule obtained by an application of a 
theorem of Rota. (9) Undirected backbones are also considered. 

3.1. Derivat ion of the M6b ius  Function 

The first step in deriving the value of #.~e,~(bo, b) on N'u~ is to show that 
the segment [bo, b] of N,v corresponds to the partially ordered set of back- 
bones of some associated "rooted difference" graph. 



562 Arrowsmith and Essam 

Define the difference graph b~=b\bo to consist of the arc set 
A(b)\A(bo) together with its adjacent vertices in b. We now describe a 
unique construction which obtains a coverable 2-rooted graph (b\bo)e, 
with roots u and v, from the graph b ~. Boundary vertices are the vertices 
of b ~, other than u and v, which also belong to bo (see, for example, 
w~ ..... w 5 in Fig. 3). The graph b is then modified at the boundary vertex w 
as follows: 

(a) If the vertex w has an inset of arcs I in b D, then disconnect the 
inset I from w and introduce a new vertex w~ for the set I together with a 
new arc oriented from wt to the root v (see Fig. 3). 

(b) If the vertex w has an outset of arcs O in b D, then disconnect the 
outset O from w and introduce another new vertex w o for the set O 
together with a new arc oriented from u to Wo (see Fig. 3). 

If this procedure is carried out at each of the boundary vertices, we 
obtain a graph of the same cycle rank as b which consists of two parallel 
graphs relative to the root points u and v, one of which is the subgraph bo 
and the other is defined to be the rooted difference graph (b\bo)R (see 
Fig. 3). 

Fig, 3. An example of the construction of the derived 2-rooted graph (b\bo)R from a back+ 
bone b containing the graph bo, The arcs of b+ are removed and the boundary vertices 
w~ .. .  w 5 are split, if necessary, and connected to the roots u and v, 
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Lemma 3.1. The cycle rank of the graph (b\bo) R is given by 
c ( b )  - C ( b o )  - 1. 

Proof. In both of the cases (a) and (b) described above, the surgery 
for each boundary vertex has involved the addition of precisely one arc and 
one vertex and hence the cycle rank c(b) = A(b)  - V(b) + 1 of the graph b 
is not changed in either case. A simple cycle count for a parallel graph b 
formed from the subgraphs b', b" satisfies c(b) = c(b') + c(b ' )  + 1. Therefore 
the graph obtained from the above construction satisfies 

c ( ( b \ b o ) e ) = c ( b ) - c ( b o ) - I  I (3.1) 

Lemma 3.2. There is an order-preserving bijection between the 
segment [bo, b] of -~u~ and the partially ordered set ~ of the backbones of 
the graph (b\bo) R. 

Proof. Consider two subgraphs b', b" ~ [bo, b] such that b 0 < b' < b'. 
The mapping between [b0, b] and ~ which we consider is given by 
b'--*(b ' \bo)R for b ' r  and b0-- '~.  Then the arc sets satisfy 
A(b ' ) \A(bo)  c A ( b ' ) \ A ( b o )  and the boundary vertices for b' are a subset of 
those of b" relative to the same graph bo. Thus, the set of arcs between the 
root and boundary vertices in (b' \bo)R is a subset of those in (b"\bo)R and 
so (b' \bo)R < (b"\bo)R and the mapping is order preserving. 

Now consider b~, b] e ~ with ~ < b~ < b~. Then both b~ and b~ are 
formed from arc sets of u-v self-avoiding walks. For each such walk in b~ 
which contains arcs not in A(b) \A(bo) ,  replace these arcs (which connect 
root and boundary vertices) by corresponding walks in b0. The acyclic 
property of b ensures that the resulting u-v walks are self-avoiding. This 
process produces a backbone in b. We take its arc union with b0 to obtain 
a supergraph backbone b' of bo such that (b' \bo)R = b'R. Clearly, the same 
procedure applied to b,; will give a supergraph backbone b" of b' such that 
(b"\bo)R = b~. Thus, we have an order-preserving bijection between N and 

[go, b]. I 
Lemma 3.2 can be interpreted as showing that the zeta functions for 

the two partially ordered sets are conjugate by the order-preserving bijec- 
tion given and hence their inverses, the corresponding M6bius functions, 
are also equal. This means that if the M6bius functions is #~ on #,  then 
the restriction of #~e,,, to the segment [bo, b] is given by #~j; in particular, 

#e,,,(bo, b) = i~.~(~, (b\bo)R) (3.2) 

[cf. (2.9)]. We have now reduced the problem to that of calculating the 
M6bius function of an appropriately defined backbone relative to the 

822/58/3-4-11 
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empty set. This calculation is done by induction on the number of arcs in 
the graph. The M6bius function of an acyclic b ~ Bu~ is related to the con- 
tracted and deleted graphs by and b~, respectively, of the graph b obtained 
by contracting or deleting a specified arc of b. We define an admissable arc 
to be an arc a = (u, w), w r v, of the u-v rooted graph b. 

Note. [~5, b~] is a segment of [~5, b], whereas [-~, by] is a different 
partially ordered set. 

Let b be an acyclic backbone containing the admissible arc a = (u~). 
If by and b~ are the contracted and deleted graphs of b relative to the arc 
a, we can deduce the following result. 

k e m m a  3.3. Suppose the vertex w of the acyclic backbone b is such 
that: 

(i) A(b)\a has only outward arcs at w; then by is a backbone and 

~ ( ~ ,  5)= ~0(~ ,  by) (3.3) 

(ii) A(b)\a has both inward- and outward-directed arcs at w; then b~ 
is a backbone and [cf. (2.12)1 

#~,~(~, b ) =  -#.e ,~(~,  b~) (3.4) 

Proof. In case (i), b' ~< b" if and only if by -.~ b~. Moreover, if b' is a 
backbone, then so is b;. Therefore, the partially ordered sets of backbones 
[~Z~, b] and [ ~ ,  by] are related by an order-preserving bijection. Hence 
(3.3) follows. 

For  case (ii), consider the set of self-avoiding walks on b which either 
contain the arc a or do not pass through the vertex w. Let bo be the back- 
bone graph formed from the union of the arc sets of these walks. This 
graph has the property that there are no walks passing through w which 
do not contain the arc a. Consider the segment [ ~ ,  bo]. We have, by (2.6), 

F~ ~o,(~,  5')=0 (3.5) 
(25 <~ b '  <~ bo 

Now consider the partially ordered set @ = {b' ~<bl b ' ~  bo}. From (3.5) 
together with (2.6) applied to [ ~ ,  b] 

#~eo~(~, b') = 0 (3.6) 
b'  ~.@ 

The elements of ~ can be paired as illustrated in Fig. 4. Every b ' e @  
contains an arc other than a with end vertex w. If b ' ~ ,  where a~A(b'), 
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then b" with arc set A(b')\a is also a backbone and clearly not a subgraph 
of bo and thus b" E ~.  Similarly, if b' ~ ~ with a ~ A(b'), then b" with arc 
set A(b')tJ a is an element of ~.  Thus we can pair graphs in ~ whose arc 
sets differ by the arc a. Now suppose that for all backbone graphs b'E 
containing arc a with less than [A(b)l arcs, 

u ~ ( ~ ,  b') + u~o~(~, b;) = 0 (3.7) 

It then follows by induction from (3.6) that 

~o~(~ ,  b) + ~ 0 ( ; ~ ,  b~) = 0 (3.8) 

once the trivial case is checked of a pair of graphs obtained from a walk 
together with the arc a (cf. Fig. 2). 

I . e m m a  3.4. The M6bius function of the partially ordered set ~,v, 
where b is an acyclic backbone, satisfies 

#~u0(~, b ) =  ( - 1 )  C(b) +1 (3.9) 

Proof. This follows from Lemma 3.3 by induction on the number of 
arcs in the graph b. Assume that the M6bius function of any acyclic back- 
bone subgraph b' of b with less than n arcs satisfies 

#~r b ' )=  ( - 1 )  c(v)+ ~ 

Now consider a backbone b with n arcs. From Lemma 3.3, we have two 
cases; either 

# ~ ( Z ,  b) = ~ . ( ; ~ ,  b~) (3.10) 

where b./is an acyclic backbone graph, or 

~.~0(;~, b ) =  - ~ ( ~ ,  b~) (3.11) 

where b~ is an acyclic backbone graph. 
The cycle ranks of b and b 7 are the same and differ by one from that 

of ba. The result follows by induction once the trivial case of a backbone 
graph consisting of one edge is checked. I 

T h e o r e m  3.1. The M6bius function of the partially ordered set ~ 
of acyclic directed backbones is given by 

# ~ ( b ' ,  b") = ( - 1 ),(h")-c(b') (3.12) 

when b' ~< b". 
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Proof. The cycle rank of the graph (b\bo) R is given by Eq. (3.1), and 
(3.2) with (3.9) gives (3.12) as required. | 

3.2. De le t ion-Cont rac t ion  Rule 

The properties described in Lemma 3.3 can also be obtained from a 
deletion-contraction rule. However, the contracted and deleted graphs of a 
backbone cannot both be backbones, and may not even be connected, and 
so we need to consider the partially ordered set ;,us To obtain the rule, we 
use a simple modification of a result given in ref. 9, p. 348: 

T h e o r e m  3.2. Let ~ ,  ~ be finite, partially ordered sets with their 
minimum and maximum elements denoted by 0 and 1, respectively. Let 
p: ~--* ~ and q: ~ ~ ~ be order-preserving functions between ~ and 
such that: 

(a) p(x )=O if and only if x = 0 .  

(b) q(0)=0.  

(c) pq(x)>~x and qp (x )~x .  

Then the M6bius functions of ~ and 2 satisfy 

#~(0, 1)= ~ #~(0, a) | (3.13) 
{a: q ( a )  = 1 } 

k e m m a  3.5. Let a be an admissable arc of the u-v rooted acyclic 
backbone graph b e ~,~. Then the M6bius functions for the deleted and 
contracted graphs b~ and by, respectively, satisfy 

#~u0(~, b~)= #aeo~(~, b )+  #~~ b~) (3.14) 

if b~ is u v connected, and 

#or by) = #.~,(~, b) (3.15) 

if b~ is not u-v connected. 

Proof. Let s@ and ~ be the partially ordered sets of u v connected 
subgraphs of b and its contraction by by some admissible arc a, together 
with the empty sets. Define the map q of Theorem 3.2 by q(b') = h', where 
h' is the contraction of the graph with arc set A ( b ' ) u  {a}. The 
admissibility of a ensures that every contracted subgraph of b is u-v con- 
nected. The map p is defined to be the injection h' ~--~ h", where h" has the 
arc set A ( h ' ) u { a } .  It is now easy to check that the hypotheses of 
Theorem 3.2 are valid. Observe that the set S =  {ae.~:  q(a)= b~} is either 
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{b} or {ba, b}, depending on whether or not ba e N, i.e., on whether or not 
b a is u v connected. Equations (3.14) and (3.15) now follow from 
Eq. (3.13). | 

Lemma 3.3 follows from Lemma 2.3 together with the following. 

L e m m a  3.6. The M6bius function #~,~ for the partially ordered set 
-~u~ satisfies, for backbone b, either 

#~e,~(~, b )=  # ~ 0 ( ~ ,  b,) (3.16) 

where b~ is a backbone, when either ba is not u-v connected or the vertex 
w is a source in ba; or 

#~,~(Z, b )=  - # ~ ( ~ ,  ba) (3.17) 

when ba is u-v connected and w is not a source in ba. 

In each case the contracted and deleted graphs are themselves back- 
bones. 

Proof. We consider the various cases: 

(i) The graph ba is u-v connected. 

(a) The vertex w is a source in ba, then ba is not coverable and so 
by Lemma 2.3 we have #Jeo~(~, ba) = 0 and (3.14) simplifies to (3.16). 

(b) The vertex w is not a source of the graph ba; then ba is acyclic 
and a backbone. Note that the walks from u to w when joined with those 
from w to v form self-avoiding walks which cover all arcs of ba covered by 
walks containing the deleted arc a. In this case, b~ is not covetable (the 
vertex v is not a source), although it is u-v connected, and so 
#~e,~(~, b~) = 0. In this case, (3.14) simplifies to Eq. (3.17). 

(ii) The graph ba is not u-v connected. Here we have the case given 
by Eq. (3.15), which is rewritten as (3.16). | 

3.3 .  U n d i r e c t e d  B a c k b o n e s  

We now obtain a relationship between the M6bius functions #eeu0 and 
#e~ of the undirected and directed backbone graphs, respectively. Let 
b , b ' e ~ , ~  be such that b ~ b ' .  Let D(b')scgu~ be the directed graph 
obtained by replacing each edge of b' by an antiparallel pair of directed 
arcs. Define 6 ' e N ~  to be the maximal directed backbone in D(b' )  and 
define D(b) similarly. Then there is a natural map q: [b, b'] ~ [b, b'] such 
that q(6"), 6 " e  [6, 6 '] ,  is the undirected graph obtained from 6" by 
removing directings or identifying a pair of antiparallel edges to a single 
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undirected edge. We define p: [b, b'] --* [b, b'] now by taking p(b"), 
b "e  [b, b'] ,  to be the maximal backbone b " ~ 2  such that q (b" )=b" .  It 
then follows that pq(f)")>~ f)" and qp(f)")= b". 

We use Theorem 3.2 to prove: 

Let b, b ' ~ . ~  with b~<b'. Then with the map q k e m m a  3.7.  
defined as above 

/~eu~,(b, b ' ) =  ~ ff~(b, /~")  (3.18) 
{E":q(E")=b'} 

where b = p(b). 

Proof. Define ~ = [b, b ' ]  and 2 =  [b,b'], where t~'=p(b') and 
1)= p(b). Note that /~ is the only directed backbone in ~ related to b by 
either p or q and so conditions (a) and (b) of Theorem 3.2 are satisfied. 
The inequalities required in condition (c) are satisfied by the properties of 
p and q given above. | 

4. A P P L I C A T I O N  TO P E R C O L A T I O N  T H E O R Y  

4.1. Percola t ion  M o d e l s  

An important application of M6bius functions is to percolation theory. 
We now define a percolation model and discuss the role of M6bius 
functions in the associated probability theory. 

Suppose that the element e (vertex or edge) of a graph G occurs with 
probability Pe independently of all other elements, and is otherwise absent. 
For any given realization the subgraph g ~ G is said to occur if all of its 
elements occur. The probability that g occurs is 

p r ( g ) =  1~ Pe (4.1) 
e g g  

If Pe = 1 for all e ~ V, then we have a bond percolation model, and if 
Pe = 1 for all e ~ E, we have a site percolation model on G. The general case 
is a mixed or site-bond percolation model on G. Let ~ be one of the par- 
tially ordered sets of subgraphs defined above in Section 2.2 and let # be 
its M6bius function. Using property P1, in any realization there is a unique 
maximal element g e ~ which occurs, i.e., g occurs, but no other subgraph 
g'e ~ occurs which contains g. The probability that the maximal element 
of N which occurs is g is denoted by P(p, g), where p =  {Pe, eeG}. Now, 
for g, g ' e ~ ,  

~, P(p, g') = pr(g) (4.2) 
g'>~ g 
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and hence from (2.8) 

P(P, g)= ~ I~(g, g')pr(g') (4.3) 
g'>~ g 

The element g E N occurs iff the maximal element g' realized in ~q satisfies 
g' >~ g. Note that P(p, ~ )  is the probability that no element of ~ other 
than ~5 occurs. Therefore 

P(p, (2~)= ~, I~(~5, g')pr(g') (4.4) 
g'~>~ 

For bond and site percolation, except when ~q = N,~, it is possible to 
simplify (4.3) using the explicit formula for/~. 

(i) If N = ~ or .~,~, then for h e ff and h r ~ ,  using the results of 
Section 2.3(a), 

P(p, h)= Y" #je(h, h') pr(h') (4.5) 
h'E [h,h + ] 

=pr (h )  ~ ( - 1 )  IE'\E(h)I ( -1 )  Iv'\v(h)l [I Pe (4.6) 
h ' e  [h,h + ] e a h '  

where E'  is the edge set of h' and E(h) is that of h. 
For  bond percolation, recalling that G =  (V, E), we consider only 

subgraphs h for which h e  [(V, ~ ) ,  G] and hence h + = G. We then obtain 
from (4.6) 

P(p,h)=pr(h) 2 l~ (-Pe) 
h'>~h e a E ' \ E ( h )  

= [ I P , ,  1~ ( 1 - p ~ )  (4.7) 
e ~ E ( h )  e c E \ E ( h )  

as expected, since 1 - p ~  is the probability that the edge e does not occur 
and h is maximal if no edge of E\E(h) occurs. 

For  mixed percolation models (4.6) must be used directly. 
For  site percolation, it is sometimes convenient to use a special 

subset 5 ~ _ W  known as the section subgraph of G, where 5~= 
{h ~ W IE(V(h)) = E(h)}. This partially ordered set is isomorphic to the set 
of all subsets of V and hence has M6bius function 

/k~(s, s') = ( - 1 )rv'\ v(s)l (4.8) 

(s' >~s), which leads to 

P(p,s)= [ I  P~ H ( 1 - p ~ )  (4.9) 
v~ V(h) ve  V \ V ( h )  

corresponding to (4.7). 
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(ii) I f N = ~ , % , o r % ~ , t h e n f o r c r  

P(p,c)= ~ #.~(c,c')pr(c')= ~ (-1)l~'"e(~/Ipr(c ') (4.10) 
c ' ~ c  c ' ~ [ c , c  +] 

For bond percolation 

P(p,c)= ~ ( -  1 )le'\e{~)l [-[ Pe (4.11) 
E ( c )  c E '  ~ 7ra(c ) ~, E ( c )  e ~ E '  

= 1-1 P~ I~ ( 1 - p e )  (4.12) 
e~ E(c) e~rcG(C ) 

which may be expressed by saying that c is the maximal element of 
which occurs provided that no perimeter edge of c also occurs (such an 
occurrence would mean that a connected supergraph of c occurs). This 
form was used in deriving the power series expansions in ref. 3 by what has 
become known as the perimeter method. 

A result analogous to (4.12) holds for site percolation with c ~ 5 P, E(c) 
replaced by V(c), and ~a(c) the set of vertices not in c but adjacent to c 
in G. For  mixed percolation (4.10) must be used. 

4.2. Pair Connectedness  

The probability that at least one (directed) walk from u to v occurs is 
known as the pair connectedness Cu~(p, G) of vertices u and v. Let N be 
~4'~,, ~guv, or ~,v; then in any realization, at least one u v walk occurs if and 
only if one of the elements of ~ \ ~  occurs and hence from (4.4) 

C(p, G)= 1 - P ( p ,  Z )  

= 1 - -  ~, # ( ~ , g ' ) p r ( g ' )  
g ' ~ > ~  

= -  ~ # ( ~ ,  g ' ) p r (g ' )  (4.13) 
g ' > ~  

The weight attached to the graph g' in the polynomial expression of 
C(p, G) in the p variables is known as the d weight, d(g'), ofg ' .  Hence, for 
g' =~ ~ ,  

d(g') = -#((2~, g') (4.14) 

where now # can be taken as the M6bius function for Yf, v, c~u~, or ~,~,. 
This is consistent with Lemma 2.2, where we deduce that # ( ~ ,  g') is the 
same for all three partially ordered sets when g' is backbone and zero 
otherwise. 
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4.3. E x p e c t a t i o n  Va lues  

Suppose that Z is a random variable, the value of which is determined 
by that element of aj which is maximal in G'. Denote this value by Z(g); then 

g(z) = E Z(g) P(p, g) (4.15) 
g E ~  

Substituting (4,3) in (4.15) gives 

g ( Z ) =  ~ Z(g) ~ #(g, g ' )pr(g ' )  
g ~  g ' ~  g 

= ~ W(g') pr(g') (4.16) 
g,~C~ 

where the weight 

W(g') = ~ Z(g) #(g, g') (4.17) 
g<~ g' 

Using (2.2), we may invert (4.17) to give 

W(g)=Z(g') (4.18) 
g ~  g' 

which may be used to calculate the weights recursively and is useful when 
an explicit form of the M6bius function is not available. This is known (in 
a wider context) as the finite cluster method (see ref. 12, pp. 322-330, and 
ref. 8, Section IV). 

If Z(g)= ?(g), the connectedness indicator, i.e., 

7(g) = { 10 if there is a u-v walk in not (4.19) 

then d~(?) = C(p, g), the pair-connectedness, and W(g') = d(g'). Thus, if/~ 
is the M6bius function of ~, 

d(g ' )=  ~ 7(g)#(g, g') (4.20) 
g<~g' 

If N=-)~,v, cg=v, or N',v, and geN,  then 7(g)= 1 unless g=~:3, so, using 
(2.4), 

d(g') = E 
~ < g < g '  

in agreement with (4.14). 

~(g, g ' )= u(~, g') (4.21) 
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4.4. B a c k b o n e  Var iab les  

If the value of the random variable Z is determined by the maximal 
u-v backbone which occurs, it is known as a backbone variable. The con- 
nectedness indicator 7 of Section 4.3 is such a variable, as is the resistance 
between u and v. Many others are given in ref. 13. 

If Z is a backbone variable, then Eq. (4.16) applies with f~ = ~f,~, ~,~, 
or ~,~ and equating coefficients of pr(g ' )  in the resulting formulas leads to 
the following extension of Lemma 2.3. 

L e m m a  4.1. Suppose that Z ( ~ ) = 0  and that Z is a backbone 
variable; then, given h'eJt~,~\~,~, the weight defined in (4.17) satisfies 
W(h') = 0. 

Proof, The result may be derived directly from the definition (4.7) 
following the proof and notation of Lemma 2.3. First note that Z ( ~ ) =  0 
together with (4,17) gives W ( ~ ) = 0 .  From (4.18), using the fact that Z is 
a backbone variable, 

W(h')=Z(h')-  ~ W(h) 
h < h '  

=Z(bo)- Y~ W(h)- y~ W(h) 
;2~ <~h <~ bo h e  S(h') 

= -  ~, W(h) (4.22) 
h �9 S(h') 

The result follows by induction since W ( ~ ) = 0  and W ( h ) = 0  for the 
minimal nonbackbone graph which consists of a walk together with an 
extra edge (cf. Fig. 2). | 

5. D I S C U S S I O N  

M6bius functions for partially ordered sets of subgraphs of a graph 
and their applications to percolation theory have been reviewed. Depend- 
ing on the nature of the percolation function to be calculated, one or more 
of the partially ordered sets defined in Section 2.2 will be appropriate. In 
early work on percolation theory, (3) connected unrooted subgraphs which 
we denoted by ~ were used. In calculating the pair-connectedness or 
point-to-point resistance in a percolation model, graphs with roots u and 
v containing a walk from u to v are more appropriate. Of the three classes 
of this type considered (Jt~, ~,~, N,~), the backbone graphs are least 
numerous and, where appropriate, should be used for computational 
efficiency. The restriction to ~),~ is possible whenever the random variable 
Z, whose expected value we wish to calculate, is a backbone variable, i.e., 
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one whose value for any configuration depends only on the maximal u-v 
backbone which occurs. The only major new result of this paper is the 
proof of the conjecture of Bhatti and Essam (7~ which gives an explicit 
formula for the M6bius function of the set of acyclic directed backbones. 

A special case of the backbone M6bius function is # e ~ ( ~ ,  b) = -d(b), 
which is the d-weight arising in a power series expansion for pair- 
connectedness. It has been shown in ref. 11 that the d-weight for an 
undirected backbone graph is the sum of the directed d-weights over all 
possible acyclic directed backbones which may be obtained by directing the 
edges of b. In the case of the general M6bius function for undirected back- 
bones we have shown in Section 3.3 that a similar expression may be 
obtained, but now a wider sum must be considered involving graphs with 
antiparallel are pairs. When no such pairs are present, the weight of the 
graph is the directed M6bius function, but the general rule which deter- 
mines the weights has yet to be discovered, This is an important topic for 
further research, since most applications involve undirected graphs. 
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